Paper review

SLAM survey

BiniU 2022. 4. 23. 23:41

참고자료

 

 

 

Sparse visual SLAM

  • MonoSLAM (2007)
    • Andrew J. Davison et al.
    • Speed up SfM algorithm using probabilistic filters
    • Can obtain landmarks and trajectory of the camera in real-time
  • PTAM (2007)
    • Georg Klein, David Murray
    • Single thread에서 sequential 하게 동작하던 MonoSLAM을 개선
    • Bundle adjustment가 filter-based approach 보다 우월하다는 것을 보여줌
  • ORB-SLAM (2015)
    • Raul Mur-Artal et al.
    • Bag of Words
    • ORB feature
    • g2o optimizer
  • ORB-SLAM2 (2017)
    • Raul Mur-Artal et al.
    • Supports stereo and RGB-D cameras
  • VINS (2017a)
    • Tong Qin et al.
    • Use IMU sensors
    • Kalman filter
  • VINS-Mono (2018)
    • Tong Qin et al.
  • SOFT-SLAM (2018)
    • Igor Cvisic et al. 
    • Improvement of ORB-SLAM2
    • Completely deterministic (i.e. always return same result for same input)
    • SOFT keypoints are not invariant with respect to rotation
  • ORB-SLAM3 (2020)
    • Visual inertial approach
    • Updated place recognition module
    • Support for pinhole and fisheye camera models.
    • Allows localization in a multi-map setup.

 

 

 

Dense visual SLAM

  • DTAM (2011b)
    • Richard A. Newcombe et al.
    • Photometric error minimization
    • Generated dense 3D map for each pixel
  • KineticFusion (2011a)
    • Richard A. Newcombe et al.
    • Used depth camera to build a dense 3D map.
    • Used TSDF (truncated signed distance function) to describe each pixel.
    • ICP (iterative closest point) algorithm to map each depth image to a map.
  • ElasticFusion (2016)
    • Thomas Whelan et al.
    • Used direct representation of the surfaces of RGB-D cameras
    • Used non-rigid deformation model for data fusion.
    • No global optimization of the graph of camera positions
    • Most of the steps take place on GPU...
  • SVO (2013)
    • Jakob Engel et al.
    • Real time on a robot processor (CPU)
    • Does not use every pixels in the image, but only those that have a neglibigle gradient.
  • LSD-SLAM (2014)
    • Jakob Engel et al.
    • Used sim(3) metric to solve a problem with an uncertain scale
    • Used probabilistic inference to determine the error in constructing 3D maps.
    • Optimization using g2o library
  • DSO (2017)
    • Jakob Engel et al.
    • Photometric error + geometric error
    • Used probabilistic pixel sampling instead of assuming smoothness.
  • LSDO (2018)
    • Xiang Gao et al.
    • Added graph optimization to get a complete solution to the visual SLAM problem.
    • Actually a combination of ORB-SLAM and LSD-SLAM approaches.
  • DSO with Rolling Shutter (2019)
    • David Schubert et al.
    • Modification of DSO (2017)
    • Process frame obtained from floating shutter.
    • IMU data are used as additional constraints for the optimization problem.

 

 

 

Dynamic visual SLAM

  • DynaSLAM (2018)
    • Bescos et al.
    • Possible to detect a priory dytnamic objets.
    • Possible to detect objects that may be static at the moment, but the dynamic in essence.
    • Pixel-wise semantic segmentation of potentially moveable objects using Mask R-CNN.
    • Background inpainting by using information from previous views.
  • DynSLAM (2018)
    • Barsan et al.
    • Large scale dynamic environments.
    • Takes stereo images and compute depth map (using ELAS or DispNet) and sparse scene flow (libviso2)
    • Multi-task Network Cascade to fild dynamic objects.
    • Final result is a static map without dynamic object with help of InfiniTAM.
  • DRE-SLAM (2019)
    • Yang et al.
    • Uses 2 wheel encoders.
    • Uses ORB features from RGB-D camera.
    • YOLOv3 for dynamic object detection
    • Loop closure with BoW
    • OctoMap.

 

 

Visual-Inertial Odometry

  • VINS-Mono (2011)
    • Maddern et al.
    • tightely coupled visual inertial system.
    • IMU preintegration between camera frames.
    • Optimization using Ceres solver
    • Loop closure
  • OpenVINS (2020)
    • Geneva et al.
    • Multi-State Kalman Filter (MSCKF) based VIO estimator.
  • VINS-Mono (2018)
    • Qin et al.
  • VINS-Fusion (2019)
    • Qin et al.
    • Extension of VINS-Mono.
    • Supports multiple visual-inertial sensor types.
    • Supports global sensors (GPS, Barometer)
    • Graph optimization module
    • Loop closure
  • Basalt (2019)
    • Usenko et al.
    • Graph-based VIO apporach.
    • KLT feature tracking and Gauss-Newton non-linerar optimization
  • Kimera (2020)
    • Antoni et al.
    • Open source c++ library
    • VIO module with GTSAM-based VIO approach.
    • Robust position graph optimizer (RPGO) for global trajectory estimation.
    • Lightweight 3D mesh module (Kimera-Mesher) for fast 3D mesh reconstruction.
    • Obstacle avoidance and a dense 3D semantic reconstruction module (Kimera semantics).
    • Semantically annotates the 3D mesh using 2D pixel-wise semantic segmentation based on deep learning.
    • 개쩐다...

 

 

 

 

반응형

'Paper review' 카테고리의 다른 글

[SLAM] ORB-SLAM  (0) 2022.06.18
[CVPR 2022] Paper list  (0) 2022.06.12
[Computer vision] Efficient adaptive non-maximal suppression  (0) 2022.04.24